BIO-IMAGING BEAMLINES AT NSLS-II

Rev 1

Family of Bio-imaging Beamlines at NSLS-II

- HXN (Hard X-ray nanoprobe)
- SRX (Sub-micron X-ray probe)
- TES (Tender X-ray microprobe)
- XFM (X-ray microprobe)
- XFN (Tender X-ray cryo-nanoprobe)*

...to cover a **broad range** of energy and spatial scales

*planning stage

BROOKHAVEN National Sync NATIONAL LABORATORY Light Source

1-BM

2-BM

3-BM

4-ID (ISR)

4-BM (XFM)

3-ID (HXN)

2-ID (SIX)

GENERIC X-RAY MICROSCOPE

Chen et al., SPIE 9592: 959201-6 (2015)

HARD X-RAY NANOPROBE (HXN)

Mission: HXN is designed and constructed to explore new frontiers of hard X-ray microscopy applications with the highest achievable spatial resolution

Apoplastic distribution of nano-CeO₂ in root cortex

Experimental Capabilities:

Absorption-, phase-, and XRF-contrast imaging

Nanodiffraction

Chemical-state mapping

Ptychography

Energy range	6 – 25 keV
Spot size	10 nm (goal: 1 nm)
Flux	108 ph/s (@10 keV)
Energy resolution	10 ⁻⁴ (ΔΕ/Ε)
Source	IVU20
Operational	May 2015

X-RAY FLUORESCENCE MICROPROBE (XFM)

Mission: XFM is a versatile X-ray microprobe optimized for spatially-resolved EXAFS spectroscopy and imaging at the micrometer scale

Localization of Ca, Ni and Mn in seed of agro-mining crop

Experimental Capabilities:

X-ray absorption spectroscopy (μXANES & μEXAFS)

X-ray fluorescence imaging (µXRF)

Fluorescence microtomography (fCMT)

X-ray microdiffraction (µXRD)

Energy range	2 – 23 keV
Spot size	~1 micron
Flux	~10 ¹¹ ph/s
Energy resolution	10 ⁻⁴ (ΔΕ/Ε)
Source	Wiggler (3PW)
Operations	Fall 2017

TENDER ENERGY SPECTROSCOPY (TES)

Mission: Tender-energy X-ray imaging and spatially-resolved extended X-ray absorption fine structure spectroscopy in diverse scientific fields

* * *
2473.3 eV (sulfide)

AND THE PARTY OF T
- 1

2482.0 eV (sulfate)

	A 1 11111
Experimental	Canahilities
LAPCIIIICIII	Capabilities.

Tender X-ray fluorescence imaging	
render X ray madrescence imaging	
Spatially- resolved EXAFS and XAS imaging	
In-Situ and in-Operando XAS	
Bulk EXAFS	

Energy range	1 – 5 keV
Spot size	2-20 micron (to 1mm)
Flux	~10 ¹² ph/s
Energy resolution	10 ⁻⁴ (ΔΕ/Ε)
Source	Bend Magnet (BM)
Operations	Fall 2016

SUB-MICRON RESOLUTION X-RAY PROBE (SRX)

Mission: SRX is designed for sub-micron resolution X-ray fluorescence imaging and spectro-microscopy.

Localization of Cu, Ca and Zn in root of pine tree

Experimental Capabilities:

X-ray Fluorescence Imaging

X-ray Tomography (full field and fCMT)

X-ray Absorption Near Edge Structure Spectroscopy

Chemical-state mapping

Energy range	4.7 – 25 keV
Spot size	sub-100 nm; 500 nm
Flux	~10 ¹³ ph/s (@12 keV)
Energy resolution	10 ⁻⁴ (ΔΕ/Ε)
Source	IVU21
Operational	May 2015

X-RAY FLUORESCENCE CRYO-NANOPROBE (XFN)

Mission: XFN is optimized for biological and environmental sciences and designed for nano-scale 2-D and 3-D imaging of frozen-hydrated samples

Experimental	Canabilities:
LAPCITICITION	Capabilities.

X-ray fluorescence imaging (XRF)	
Fluorescence microtomography (fCMT)	
X-ray phase contrast imaging and tomography	
X-ray absorption spectroscopy (XANES)	

Energy range	2 – 12 keV
Spot size	30 nm; 100 nm
Flux	~10 ¹⁰ ph/s (@10 keV)
Energy resolution	10 ⁻⁴ (ΔΕ/Ε)
Source	IVU
Projected operations	2019

WEBLINKS

http://www.bnl.gov/ps/beamlines/beamline.php?b=XFM

http://www.bnl.gov/ps/beamlines/beamline.php?b=TES

http://www.bnl.gov/ps/beamlines/beamline.php?b=HXN

http://www.bnl.gov/ps/beamlines/beamline.php?b=SRX

